
Issues in Indic Language Collation

Tamil Internet 2001 1 Kuala Lampur, Malaysia, August 2001

Issues in Indic Language Collation

Cathy Wissink
Program Manager, Windows Globalization
Microsoft Corporation

I. Introduction

As the software market for India1 grows, so does the interest in developing products for
this market, and Unicode is part of many vendors’ solutions. However, many software
vendors see a barrier to implementing Unicode on products for the Indic-language
market. This barrier is the perception that deficiencies in Unicode will keep software
developers from creating products that are culturally and linguistically appropriate for
the Indian market. This perception manifests itself in a number of ways, but one major
concern that the Indic language community has voiced is the fact that the Unicode
character encoding order is not appropriate for linguistic collation (or sorting). This
belief that character encoding order in Unicode must be equivalent to linguistic collation
of these same scripts and their respective languages is considered by some developers a
blocking point to adoption of Unicode in the Indian market, and is indicative of the
greater concern within the Indic-language community about the feasibility of Unicode
for their scripts.

This paper will demonstrate that this perceived barrier to Unicode adoption does not
exist and that it is possible to provide properly globalized software for the Indic market
with the current implementation of Unicode, using the example of Indic language
collation. A brief history of Indic encodings will be given to set the stage for the current
mentality regarding Unicode in the Indian market. The basics of linguistic collation and
its application to Indic scripts will then be discussed, compared to encoding, and
demonstrated as it exists on Windows XP. The other technologies involved to enable
properly globalized software will also be briefly discussed as they pertain to the
collation example. In conclusion, the paper will show that Unicode as an encoding is
more than sufficient to support Indic scripts and languages, since it is only one step of
many to develop culturally and linguistically appropriate software for India; software
vendors must complete the globalization work needed to support Indic scripts and
languages. This is the case already with some software vendors, including Microsoft—
Unicode is used in tandem with other technologies (e.g., rendering, input, font support
and national language functions) to create a product that is linguistically and culturally
appropriate for the Indic-language software market.

II. The Indic script development community and Unicode

As developers of Indic-language software begin to consider Unicode as an encoding
option for their software, they see a need to refine the repertoire to best represent the

1 Note that this market does stretch far beyond the borders of India, and as such, any references
to the “Indian market” actually imply “Indic-script/language market”.

Issues in Indic Language Collation

Tamil Internet 2001 2 Kuala Lampur, Malaysia, August 2001

scripts. Over the past year, it has become increasingly obvious that many Indic-script
software developers are not fully satisfied with the encoding solution that Unicode
provides for Indic scripts. One of the concerns in this developer community has been
that the Unicode script repertoires for Indic languages are too Devanagari based, having
initially been defined from ISCII 1988; developers for non-Devanagari languages have
felt that ISCII (and respectively Unicode) do not satisfactorily support their languages.
As such, changes to the Indic character repertoire to better represent non-Devanagari
languages have been proposed to the Unicode Technical Committee (UTC), including
changes to the Tamil block description (which is now being updated for a future version
of the standard). Like other script repertoires in Unicode, it has taken some time to
refine the set of characters, character properties and block descriptions to the full
satisfaction of the linguistic community, and this could continue for some time2.

However, beyond the updates in character semantics and repertoires, a visible
stumbling block to Unicode acceptance with the Indian development community
remains: the perception that character encoding order should be equivalent to linguistic
collation, and that incorrect ordering of code points in Unicode will result in incorrect
collation. (This perception is reflected in changes implemented in ISCII 1991; some of
the changes from ISCII 1988 involved rearranging code points within the encoding,
resulting in a more linguistically-correct order.) In the last year, there have been several
proposals brought before the UTC involving rearranging code points in the Indic
repertoires.

Rearranging characters however runs counter to Unicode Character Encoding Stability
Policy #1: once a character is encoded, it will not be moved or removed3 and any such
proposal to rearrange characters is rejected by the UTC. As a result, the perception
persists in the Indic language communities that since code points for a particular
language are out of order within the Unicode repertoire and will not be rearranged,
correct linguistic collation (and by extension, properly globalized software) is not
possible using Unicode.

As will however be discussed in this paper, encoding order cannot be considered
satisfactory collation for just about any language, and the Indic languages are no
exception to this rule. The two major reasons for this are:

1. Character encodings are generally script- (or subscript) based4; collation must be
applied at the language (or language variant) level. This means that any chosen
encoding order could be incorrect for a number of languages supported by the
script, despite being correct for other languages;

2 For more information on the issues surrounding Unicode and Indic script encodings, please
refer to Michael Kaplan’s paper within these proceedings: Unicode and Indic Scripts: How to
Hide a Good Implementation.
3 http://www.unicode.org/unicode/standard/policies.html
4 The Unicode Standard defines a script as: “A collection of symbols used to represent textual
information in one or more writing systems.” (http://www.unicode.org/glossary/)

Issues in Indic Language Collation

Tamil Internet 2001 3 Kuala Lampur, Malaysia, August 2001

2. Encodings do not always take graphemes or language-specific sorting elements
into account (again, in part due to the fact encodings are script based), and
language-based graphemes (which often are multiple code points) are needed for
correct collation.

(A third and less important reason is that there is a long-standing precedent for
“disorder” in encodings, if extant code pages or character sets are any indication of
implementer expectation concerning order of code points5. It is common knowledge in
most user communities that some function outside of the character encoding will be
needed to perform linguistic collation; there is no expectation that code point order
within an encoding will be sufficient. Many scripts in Unicode already fall into this
category.)

To better understand these two major reasons why encoding order cannot serve as a
collation order for most languages, including Indic languages, a discussion on the basics
of collation follows.

III. Collation: Concepts and Application to Indic Languages.

What is collation? For the purposes of this paper, collation is defined as the culturally6
expected ordering of linguistic characters in a particular language7. This culturally
expected ordering allows users to define, structure and find data in a way that is
consistent for their particular language. For example, a filing system that uses an
alphabetical ordering for English will start with A, and continue on to Z in a manner
expected by English users. Users of the filing system will expect to find C before D, and
R before S; if the filing system uses correct collation, users will be able to file and find
data easily. Unfortunately, most languages use an ordering system that is significantly
more complicated than this English example. Even within the Latin script, there are
considerable differences in how A-Z (and additional characters) sort by language. Some
examples include:

• In Danish and Norwegian, Ä and Ö follow the letter Z;

5 A clear example of this is in the Windows code pages, as seen at
http://www.microsoft.com/globaldev/reference/WinCP.asp. The ordering of 1252 for example
is not acceptable for any language or culture. In addition, a speaker of any of the Latin-script
languages covered by Unicode would not be pleased by the default code point ordering within
the standard, since the Latin character repertoire stretches far across the Basic Multilingual Plane,
completely out of linguistic order for Latin languages.
6 Some people argue that collation can be based on individual expectations (an individual might
have different expectations than someone else who speaks the same language), or even that of
expected results within an application. Regardless of the type of expectation, the constants here
are that the results should be consistent over time, generally not random (at least from a human
language perspective), and usable.
7 The Unicode Standard defines collation as: “The process of ordering units of textual
information. Collation is usually specific to a particular language. Also known as alphabetizing
or alphabetic sorting…” (http://www.unicode.org/glossary/)

Issues in Indic Language Collation

Tamil Internet 2001 4 Kuala Lampur, Malaysia, August 2001

• In Finnish and Swedish, V = W;
• In Polish, Z < Ź < Ż;
• Turkish sorts Ş after S.

In addition, many languages support multiple sorts. For example, German sorting can
vary depending on how the umlauted characters are treated (either as variants of their
non-umlauted forms, or as expansions); Hungarian supports multiple collations as well.
As is seen by this Latin script example, the variance in a single script and even a single
language prohibit defining an all-encompassing collation for a script that is acceptable
for all languages, and this applies to most scripts.

Collation as a rule is primarily based on the graphemes of a language. The Unicode
glossary defines grapheme as:

(1) A minimally distinctive unit of writing in the context of a particular writing
system…A grapheme is for a writing system what a phoneme is for a phonology.
(2) What a user thinks of as a character.8

A grapheme, for the purpose of this paper, refers to a discrete element in a language that
carries a primary weight in sorting9. Since users consider this element a “character” in
their language, that impacts collation. Users expect “groupings” of strings to be
collected based on these primary sorting weights. From the previous sorting examples
given, some graphemes include Ä and Ö in Norwegian, and Z, Ź and Ż in Polish. What
is a grapheme in one language may not be a grapheme in another language in the same
script; in addition, it is very often the case that identical graphemes used in different
languages sort differently. For example, Ö is a grapheme in Turkish, Swedish, and
Danish, among other languages. It sorts however in very disparate ways depending on
the language:

Turkish: N < O < Ö < P < Q
Swedish: Y < Z < Å < Ä < Ö
Danish: X < Y < Z < Ä < Ö

In addition, these “characters”, or graphemes, can be represented by multiple code
points in Unicode. For example, Ö is encoded at U+00D6 as a precomposed form, but
can also be created through the composition of U+004F and U+0308; both forms need to
sort in a correct manner for the appropriate languages. This is not unusual behavior;
many primary sorting elements (or graphemes) and secondary sorting elements of a

8 http://www.unicode.org/glossary/
9 The relationship between “unique character” (that is, a character with a primary weight in
sorting for a particular language) and grapheme may be somewhat contentious to some encoding
specialists and linguists, but the potential differences between the two concepts are beyond the
scope of this paper.

Issues in Indic Language Collation

Tamil Internet 2001 5 Kuala Lampur, Malaysia, August 2001

language can consist of multiple code points10. Because linguistic collation is primarily
based on graphemes in a language, and because a single code point cannot always
represent graphemes, it is not possible to create a culturally correct sort based on pure
code points (that is, characters within an encoding) for many languages.

How do these two concepts discussed above apply to Indic scripts and languages?

The first concept, namely that of a single order not being sufficient for a single script,
applies to at least some of the Indic scripts, notably Devanagari. For example: while the
research is not complete for Devanagari-script languages other than Hindi, it is apparent
that at least Marathi can have a different order than Hindi (Sanskrit and Konkani could
possibly differ than Hindi as well). This is seen in the below sample comparing the
latter section of consonant ordering within both Hindi and Marathi: Lla (U+0933) sorts
between La (U+0932) and Llla (U+0934) in Hindi, but comes after Ha (U+0939) in
Marathi. In addition, two different combinations of code points (Ksha and Jnya) are
considered conjuncts in Hindi, but are unique characters (graphemes) in Marathi.

Table 1: Some differences in sorting order between two Devanagari script languages: Hindi and
Marathi.

Hindi: Marathi:

 Devanagari La U+0932 Devanagari La U+0932

 Devanagari Lla U+0933 Devanagari Va U+0935

 Devanagari Llla U+0934 Devanagari Sha U+0936

 Devanagari Va U+0935 Devanagari Ssa U+0937

 Devanagari Sha U+0936 Devanagari Sa U+0938

 Devanagari Ssa U+0937 Devanagari Ha U+0939

 Devanagari Sa U+0938 Devanagari Lla U+0933

 Devanagari Ha U+0939 Devanagari Ksha* U+0915, U+094d, U+0937

 Devanagari Jnya** U+091c, U+094d, U+091e

*considered a conjunct in Hindi, but the 35th consonant in Marathi

**considered a conjunct in Hindi, but the 36th consonant in Marathi

10 Other examples here include LJ and NJ compressions for Croatian, the NG compression for
Vietnamese, and combinations of base character and combining mark in many languages (like
the Ö above).

Issues in Indic Language Collation

Tamil Internet 2001 6 Kuala Lampur, Malaysia, August 2001

This particular example highlights why a single collation will not work for the
Devanagari script; different languages that use the Devanagari script have different
expected collation results. Developers for the Indic market (or any language market)
should consider it best practices to leverage extant (or develop new) collation
technology, rather than depending on character encoding order to get correct sorting
results for different languages. Software vendors developing linguistic collation
functions conduct research to determine the correct “character” order (where a character
actually corresponds to a single code point) for each language within a script and write
this into the collation function; these functions should be called for collation, rather than
placing any expectation on the encoding that it should be in perfect sorting order.

In comparison to Devanagari, which clearly cannot use a single code point order due to
different language collations within the script, there are other Indic scripts which
support just a single language (e.g., Gurmukhi, used for the Punjabi language11). Many
implementers wonder: can these scripts support linguistic collation for their respective
languages using only code point order (provided of course the code points are in the
correct order)?

The answer to this question is no; the second concept of collation (primary sorting
elements or graphemes often require multiple code points) applies to monolingual
scripts as well as to multiple-language scripts like Devanagari12. In researching collation
for Indic languages13, it became apparent very quickly that properly sorting graphemes
in many of the Indic languages, including those with a single language per script, often
requires treating multiple (two or three) code points as a single sorting element.

For example, in Hindi, consonants with modifier marks, that is the consonants modified
by candrabindu (U+0901), anusvara (U+0902) or visarga (U+0903) sort as unique
characters14 before the unmarked consonant. In other words, the sorting order for Hindi
consonants follows this pattern (using Ka as an example):

 (Devanagari Ka + candrabindu)
 (Devanagari Ka + anusvara)
 (Devanagari Ka + visarga)

 (Devanagari Ka)

11 Singh Gill, Harjeet, 1996. “The Gurmukhi Script.” In The World’s Writing Systems, ed. Peter T.
Daniels and William Bright, pp. 395-398. New York: Oxford University Press.
12 You can see this concept in practice with the Ksha and Jnya consonant examples for Marathi
listed above.
13 The languages we have worked on include Hindi, Marathi, Tamil, Punjabi, Gujarati, Kannada,
Telugu, with more Indic scripts and languages planned for future versions. The research on
Indic collation is challenging (compared to many other scripts Windows supports) and as such
sorting continues to be refined, but we are committed to the on-going research and feedback this
work entails.
14 Informants referred to these as “letters”, “consonants” or “graphemes” in Hindi.

Issues in Indic Language Collation

Tamil Internet 2001 7 Kuala Lampur, Malaysia, August 2001

The three variants of Ka with the modifier marks are considered equal from a primary
weight perspective (they differ on a secondary weight level), however, all three variants
with modifier marks have a lighter primary weight than the version of Ka without a
modifier mark. A consonant and one of these modifier marks has a lighter primary
sorting weight than one of the same consonants without a modifier mark.

In addition, the nukta in Hindi (U+093c) modifies a consonant in sorting such that this
combination has a combined primary weight equivalent to an unmodified consonant,
but with an additional tertiary weight. That is:

 (Devanagari Ka)
 (Devanagari Ka + nukta)15

This phenomenon is not limited to Hindi. Tamil has an analogous structure in sorting
with the virama (U+0bcd), such that a consonant + virama (halant) combination carries a
primary weight that is lighter than the consonant by itself (in other words, a consonant +
virama combination is a unique sorting element that comes before the consonant
without a virama; a consonant + virama combination has a lighter primary weight than
a consonant by itself):

 (Tamil Ka + virama)
 (Tamil Ka)
 (Tamil Nga + virama)
 (Tamil Nga)

 (Tamil Ca + virama)
 (Tamil Ca)

 (Tamil Nya + virama)
 (Tamil Nya)

Like Hindi, it is often the case in Tamil that multiple code points combine to create a
single sorting element16. This is the situation in other Indic languages as well17, and
because of this, using a single code point order within an encoding as linguistic collation
is in no way sufficient, even for those scripts which only represent one language. Again,
developers should consider using code point order for collation to be against best
practices, and they should either use or develop functions that provide linguistic
collation. It is important for the development community to consider character
encoding order just a characteristic of the encoding, and to not place the burden of
linguistic collation on the encoding.

15 Note that U+0915 and U+093c should sort equivalently to U+0958, which is (Devanagari Qa =
Ka + nukta). This is the precomposed vs. composite version of Ka + nukta (analogous to the Ö
example listed previously), and shows yet again how code point order cannot work for sorting,
since in this case, two code points should sort equivalently to a single, unrelated code point.
16 Tamil has two primary sorting elements that are created from three code points, namely the
Ksha (U+0b95, U+0bcd, U+0bb7) and the Shri (U+0bb7, U+0bcd, U+0bb0).
17 Initial research shows that this type of structure will also be needed for other Southeast Asian
languages (e.g., Khmer, Dzhongkha), perhaps with a four- or five-to-one (!) code point to sorting
element relationship.

Issues in Indic Language Collation

Tamil Internet 2001 8 Kuala Lampur, Malaysia, August 2001

IV. Unicode: only one part of the globalization solution for Indic scripts and languages

As has been demonstrated in this paper, collation for any language has certain structural
needs that cannot be met by an encoding, and Unicode as an encoding is no exception.
However, it should also be clear that character encodings were not developed to work as
acceptable sorting orders; encodings are for the sole purpose of providing a relationship
between a linguistic character and a number.

So if developers cannot count on encoding order to be a viable sorting order for Indic
scripts and languages, how can they get culturally correct results? In addition, what else
needs to be considered to properly globalize software for India (or any part of the
world) if Unicode is only part of a globalization solution?

There are commercial products available today built on Unicode that have implemented
culturally correct sorting for Indic languages. For example, Windows 2000 shipped with
full language support for Hindi and Tamil, including linguistic collation as described in
the previous section. (Windows XP will ship with additional support for other Indic
languages, including collation for Telugu, Kannada, Punjabi and Gujarati). As the
development team did not expect that encoding order would be sufficient for the Indic
languages (since it was not the case with all other linguistic collation support on
Windows), it was apparent that collation would need to be researched to add this
information to the data tables which support such functions as LCMapString (for
sortkey generation) and CompareString (for sorting)18. For this reason, part of the
Windows International development team has been tasked with researching and
implementing linguistic collation for all locales (cultural/regional combinations)
supported in product. Unicode is considered just an encoding, not saddled with any
expectations for collation; collation is to be handled elsewhere (i.e., the above-named
functions)19. As a result, it is possible to get correct collation (and other functionality) for
supported Indic languages on any version of Windows 2000 or Windows XP, including
the English version20; Unicode was the underlying encoding used in both products, but
collation was built in elsewhere.

What else needs to be considered for full Indic support in software, if one implements
Unicode? As has been discussed in this paper, a character encoding (specifically
Unicode) cannot carry the burden of collation; it also cannot be responsible for all glyph
representations of a character (as has also been proposed by certain implementers in the

18 An interesting side note regarding the development of Indic sorting: the structures for
collation in Windows NT were developed in 1991; when we started work on Hindi and Tamil 6
years later, we were able to work with the extant collation architecture without any changes to
code. By virtue of working with Unicode, which is—for lack of a better term—character based,
we were able to add Indic languages to only the data tables and CompareString worked correctly.
19 Of course, the Unicode Collation Algorithm is part of Unicode; however, that is an algorithm
independent of the specific placement of characters within the standard.
20 This document was written using Windows XP and Office 2000 (English versions of both), with
full Indic support enabled.

Issues in Indic Language Collation

Tamil Internet 2001 9 Kuala Lampur, Malaysia, August 2001

Indian development community)21. This is where input methods, font support and
rendering engines play a role22. In addition, full NLS (National Language Support) data
for formatting of time, dates, numbers, currencies and other locale elements needs to be
considered.23 Again, it should be emphasized that if Unicode is treated as an encoding,
without the burden of being a catchall for globalization (collation, glyph representation,
input, etc.), it is the best encoding solution for software that runs worldwide.

Software vendors are still in the early stages of developing software that is fully
satisfactory for the Indian market on all levels of globalization. It will likely take a few
iterations of the products and on-going refinement of the implementations before the
Indic language development community is completely happy with the available
products; vendors are working with this community to ensure that the community’s
feedback is integrated into their products. However, as the Windows development team
has found over the last ten years, implementing Unicode makes development for the
worldwide market (including the Indic languages) not more complicated, but
considerably easier; Unicode is the future of worldwide software, including that
software for the Indic language market.

21 Michael Kaplan will cover this topic in his Indic encoding paper (previously referenced).
22 For an explanation of the relationship between Indic writing systems, rendering and fonts,
please see Mudur, S.P., et al. 1999. “Computer Graphics in India: An architecture for the
shaping of Indic texts.” In Computers & Graphics 23: 7-24.
23 For more comprehensive information on globalization on Windows, please see the paper
Unicode and Windows XP, published in the Unicode proceedings (Hong Kong, April 2001 and
San Jose, September 2001), as well as Kevin Gjerstad’s paper on the Windows Text Services
Framework (available in the Unicode proceedings, San Jose 2001)

	Issues in Indic Language Collation
	Program Manager, Windows Globalization

	Microsoft Corporation
	I. Introduction
	II. The Indic script development community and Unicode

